
1.  Introduction
The US is one of the largest anthropogenic emitters of methane, behind only China and India (Saunois et al., 2020). 
Numerous recent studies indicate that US methane emissions are 48%–76% higher than estimated by the EPA 
Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) (Alvarez et al., 2018; Barkley et al., 2019, 2021; 
Caulton et al., 2019; Robertson et al., 2020; Zavala-Araiza et al., 2015). In addition, a marked increase in natural 
gas activity over the past 15 years has caused concern over possible increases in US methane emissions. US 
natural gas production increased by 43% between years 2005 and 2015, and this increase is coincident with the 
deployment of hydraulic fracturing and horizontal drilling technologies (US EIA, 2016). Several studies argue 
that increased natural gas production activity likely means increased fugitive methane emissions (Howarth, 2019). 
By contrast, EPA's GHGI indicates that total US anthropogenic methane emissions decreased by 4.5% between 
years 2005–2015, and emissions from the natural gas sector decreased by 5.9% (US EPA, 2022). EPA attributes 
most of this change in natural gas emissions to decreasing exploration and distribution emissions and reports 
decreasing emissions factors across many areas of the natural gas sector (US EPA, 2022).

In addition to the EPA inventory, a handful of studies based on atmospheric observations estimate trends in US 
methane emissions. However, these studies do not agree on whether US methane emissions increased. Turner 
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breakthrough of combining horizontal drilling and hydraulic fracturing. This increase in natural gas activity 
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important greenhouse gas. However, existing studies of US methane emissions trends have reached conflicting 
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et al. (2016) examine trends in atmospheric observations from a site in Oklahoma and from the Greenhouse Gases 
Observing Satellite (GOSAT). They estimate that US emissions increased by 2.5%–4.7% per annum between 
years 2010 and 2014, depending on the observations analyzed. Sheng et al. (2018), also using GOSAT, report 
a similar upward emissions trend of 2.5 ± 1.4% per annum between years 2010–2016. By contrast, Bruhwiler 
et  al.  (2017) point out that global inverse modeling studies show no upward emissions trend for the US and 
provide several possible explanations for this discrepancy, including the impacts of sampling variability, the 
estimated methane boundary condition, atmospheric transport, and/or the limited sensitivity of column-averaged 
methane observations to surface emissions. Additional studies focused on the US reach similar conclusions; 
Lan et al.  (2019) report a trend in US emissions of 0.7 ± 0.3% per annum (2006–2015) using in situ aircraft 
observation sites, Maasakkers et al. (2021) estimate a trend of 0.4% per annum (2010–2015) using observations 
from and Lu et al. (2022) estimate a trend of 0.1 ± 0.2% per annum (2010–2017) using both GOSAT and in situ 
observations.

The purpose of this work is to help explain the disparate trends reported by recent studies that use atmospheric 
methane observations and examine the role of variability in atmospheric transport. In a previous study, Bruhwiler 
et  al.  (2017) simulate methane timeseries at two aircraft sites in the northeastern US and show substantial 
inter-annual variations in methane mixing ratios, even without a trend in emissions. The results suggest that 
atmospheric transport may have a large imprint on IAV in atmospheric methane observations. Indeed, many 
existing studies emphasize the salient role of transport in determining the atmospheric distribution of GHGs and 
of numerous other air pollutants—from hourly to annual time scales and site-level to global spatial scales (e.g., 
Barnes et al., 2016; Denning et al., 1999; Keppel-Aleks et al., 2011; Li, 2018; Li et al., 2010; Liu et al., 2015; 
Lu et al., 2019; Pal et al., 2020; Samaddar et al., 2021; Sweeney et al., 2015; Torres et al., 2019). In the current 
manuscript, we compare how emissions versus atmospheric transport likely impact AME—for both in situ and 
satellite observations across the US. We specifically explore whether this IAV in transport is likely to average 
out or cancel out from one region to the next. We then evaluate what meteorological factors may be driving this 
methane variability. Lastly, we explore connections between methane variability and large-scale climate patterns 
like the El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO).

2.  Data and Methods
2.1.  Atmospheric Modeling

We model atmospheric methane enhancements (AME) between years 2007 and 2015 at 8 tower measurement 
sites in the continental US that are part of the National Oceanic and Atmospheric (NOAA) Global Monitoring 
Laboratory (GML) Cooperative Air Sampling Network (Figure 1a; Andrews et al., 2014). Tall tower observa-
tions in the US greatly expanded in 2007, and the 8 tower sites included in this study have observations available 
during most or all years of the study period. Sites include Argyle, Maine (AMT); Erie, Colorado (BAO); Park 
Falls, Wisconsin (LEF); Billings, Oklahoma (SGP); Sutro Tower, San Francisco, California (STR); West Branch, 
Iowa (WBI), Walnut Grove, California (WGC), and Moody, Texas (WKT) (Andrews et al., 2014). We further 
model AME at 80,914 GOSAT sounding locations across the continental US (CONUS) between years 2009 and 
2015. GOSAT sounding locations are specifically taken from the UoL Proxy XCH4 Retrieval Version 9 (Parker 
et  al.,  2020), which is used in several recent studies of methane emissions (Maasakkers et  al.,  2021; Sheng 
et al., 2018).

We model AME at these locations using simulations from the Stochastic Time-Inverted Lagrangian Transport 
model (STILT) (e.g., Lin et al., 2003). STILT is a regional particle trajectory model; it tracks a large set of tracer 
particles (500 in this study), and the dispersion of those particles in the atmosphere is used to generate an influ-
ence footprint (in the units of ppb per unit of emissions). We model AME at each location and time by multiplying 
each of these footprints by a methane emission estimate (described below). Because STILT is regional in nature, 
it only estimates the methane increment or enhancement at the observation sites due to emissions in the model 
domain, in this case North America. A methane boundary condition or background can be added to this enhance-
ment to estimate total methane mixing ratios at the observation sites, though variability in the background is not 
the focus of the present study.

The STILT simulations used here were specifically generated as part of the NOAA CarbonTracker-Lagrange 
project (e.g., Hu et al., 2019) and are driven by meteorology from the Weather Research and Forecast (WRF) 
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model (Skamarock et  al.,  2008). To date, WRF-STILT has been used for atmospheric transport in numerous 
existing regional methane and greenhouse gas modeling studies (e.g., Hegarty et al., 2013; Hu et al., 2019; Miller 
et al., 2013, 2014; Miller, Miller, et al., 2016; Nehrkorn et al., 2010). Each STILT simulation is run 10 days back 
in time, and footprints have a spatial resolution of 1° latitude by 1° longitude.

We further use several methane emissions estimates in the STILT simulations. Specifically, we use the US EPA 
gridded inventory across CONUS (available only for year 2012 at the time of writing; Maasakkers et al., 2016) 
and the Emission Database for Global Atmospheric Research (EDGAR) gridded methane emissions version 
5 (Crippa et  al.,  2019) for anthropogenic emissions outside CONUS. We additionally use wetland methane 
emissions calculated using the model in Pickett-Heaps et al. (2011) (and as used in Miller et al., 2014; Miller, 
Commane, et al., 2016; Miller, Miller, et al., 2016) and use biomass burning methane emissions from the Quick 
Fire Emissions Dataset (QFED v2.4, Darmenov & da Silva, 2013).

Figure 1.  A map of tower-based in situ monitoring sites evaluated in this study (a). The panel also shows methane emissions 
from the oil and gas sectors, as estimated in the US EPA 2012 inventory (Maasakkers et al., 2016). Panel (b) further displays 
trends in modeled atmospheric methane enhancements (AME) (with uncertainties) for different scenarios at the in-situ 
observation sites (years 2008–2015). Lastly, panel (c) displays the difference in estimated trends in AME at Greenhouse 
Gases Observing Satellite observations sites (years 2009–2015) between modeling scenario 3 (interannual variability (IAV) 
in transport and no trend in emissions) and scenario 4 (no IAV in transport or emissions).
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2.2.  Modeling Scenarios and Trend Fitting

We analyze four modeling scenarios: one with trends in emissions and IAV in atmospheric transport (scenario 
1), one with trends in emissions and without IAV in atmospheric transport (scenario 2), one without trends in 
emissions and with IAV in atmospheric transport (scenario 3), and one without trends in either emissions or IAV 
in atmospheric transport (scenario 4).

The emissions scenarios are generated based on the methane emissions estimates described in Section 2.1. For the 
scenario with no emissions trend, we use the monthly US EPA inventory estimate, monthly wetland emissions, 
and daily QFED emissions for year 2012 in all years of the study. For the scenarios with an emissions trend, we 
scale EPA oil and gas emissions in each state relative to monthly state-wide dry natural gas production data (US 
EIA, 2022) from years 2007–2015. This scaling results in an emissions trend of 2.3% per annum from the oil 
and gas sectors, changing from 8.3 Tg yr −1 2007, to 10 Tg yr −1 in 2015. By comparison, total US anthropogenic 
and natural emissions in all simulations are 47.9 Tg CH4 for year 2012. Note that we do not add a trend to other 
methane source types because we are primarily interested in how a plausible trend in oil and gas emissions would 
manifest at the atmospheric observation sites, all else being constant. Some studies argue that US methane emis-
sions trends are likely being driven by the oil and gas sectors (e.g., Sheng et al., 2018; Turner et al., 2016), and 
we therefore create a hypothetical emissions scenario that focuses on that sector.

We further generate meteorology scenarios that include IAV in atmospheric transport and scenarios that do not. 
For the former scenarios, we run WRF-STILT using standard protocols (Section 2.1). For the latter scenarios, 
we average footprints from different years to remove IAV in transport. Specifically, at each in-situ monitoring 
site, we average the footprints from each month of the year across all years of modeling simulations (see Text S2 
in Supporting Information S1). In other words, we average the WRF-STILT footprints from all Januarys (across 
2007–2015), across all Februarys, etc. This approach preserves seasonal variability in the footprints but removes 
IAV. For the GOSAT observations, we group the observations into 4° latitude by 4° longitude grid boxes across 
the United States. Within each box, we average the footprints from each month as described above.

We subsequently fit trend lines to the model estimates of AME for each scenario. We specifically fit trend lines 
using the procedures outlined in Lan et al. (2019) for in situ observations and Sheng et al. (2018) for GOSAT 
observations. We use line-fitting procedures from these studies to ensure that the results presented here are 
directly comparable to existing research (Text S2 in Supporting Information S1).

3.  Results and Discussion
3.1.  Atmospheric Transport Can Explain Conflicting Estimates of US Emissions Trends

Atmospheric transport yields an apparent upward trend in AME at all tall tower observation sites during the 
study period. Figure 1b displays the results of the four modeling scenarios at these sites, and the individual bars 
in the plot display the trend in AME estimated using a linear regression (Section 2). We find an upward trend in 
AME at all sites during the study period (2008–2015), irrespective of whether we include a trend in emissions 
(e.g., scenarios S1 and S3). Even without an emissions trend, the model outputs often display an upward trend 
between 2% and 5% per annum, ranging from 0.2% per annum (at Argyle) to 4.9% per annum (at Erie) (scenario 
3). By contrast, when we remove IAV in meteorology, the upward trend in AME largely disappears, even when 
we include a trend in emissions. Specifically, the differences in estimated trends between scenarios 1 and 3 is 
between 0.1% and 1.1% per annum, comparable in magnitude to the modeled emissions trend (0.5% of total US 
emissions per annum).

These numbers are comparable in magnitude to the US methane emissions trend estimated by several atmospheric 
studies (e.g., Sheng et  al.,  2018; Turner et  al.,  2016). These studies attribute trends in observed atmospheric 
mixing ratios to emissions, while our results suggest that IAV in atmospheric transport can yield comparable 
numbers. Note that we estimate small negative trends in a few scenarios. In most of these cases, the standard error 
bars encompass zero. In two other instances (S2 at STR and WGC), the negative trend estimate occurs at sites that 
have a very large seasonal cycle in AME and have sustained data gaps; the combination makes trend estimation 
at these sites prone to error (Text S3 in Supporting Information S1).

More broadly, atmospheric transport has a large impact on inter-annual variability (IAV) in AME. For example, 
we calculate the maximum and minimum values in annually-averaged AME at each observation site in the tall 
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tower network. For these calculations, we use anthropogenic emissions that do not contain any trend (scenario 3 
described above), such that IAV in AME does not reflect variability in emissions. We find, on average, that IAV 
in AME at the observation sites is equal to 40% of the total average AME from North America (e.g., Figures S1 
and S2 in Supporting Information S1). At some sites, particularly sites that are close to large agricultural or oil 
and gas emissions sources, this IAV is as high as 59% of average AME (e.g., at Eerie, Colorado, site BAO). In  a 
previous study, Bruhwiler et al. (2017) argue that atmospheric transport can yield a trend of up to 1.5 ppb/yr in 
total column methane at two regular NOAA aircraft sites in the northeastern US. By contrast, we evaluate the 
impacts of transport across the entire US for both in situ and GOSAT satellite observations and find IAV as large 
as 25 ppb or over half the average annual AME at sites near large methane sources (e.g., BAO, SGP, WGC, and 
WKT; Figure S2 in Supporting Information S1).

We find similar results for simulated GOSAT methane enhancements. For example, Figure 1c shows the differ-
ence between estimated trends in scenarios 3 and 4 (simulations with and without IAV in transport), and most 
locations show a large positive difference in estimated trends (over 3% per annum), indicating that variability in 
atmospheric transport (in scenario 3) is likely driving much of that trend. Note that a small number of grid boxes 
yield unrealistic trend estimates (Figure 1c, e.g., coastal northern California and northern Vermont). These grid 
boxes contain a limited number of observations that are not evenly distributed across seasons and years, making 
trend estimation challenging.

Note that the apparent trends described above are specific to the study period (years 2008–2015). AME during 
other time periods exhibits similar IAV. However, the apparent trend in AME is downward as often as it is 
upward. A handful of in situ monitoring sites in the continental US began operations before 2007, and Figure S4 
in Supporting Information S1 displays observational timeseries from three sites with long data records (AMT, 
LEF, and WKT). Even over two decades, the IAV in these timeseries is larger than any apparent long-term trends, 
implying that it would be challenging to separate emissions from atmospheric transport without using an atmos-
pheric transport model.

We further conduct two sensitivity tests for in-situ observation sites in oil and gas producing regions (SGP and 
WKT)—one test explores the impact of the meteorological product used in STILT and one explores the impact 
of observation sampling time and frequency (Text S6 in Supporting Information S1). In simulations using both 
meteorology products, the impact of a trend in emissions is small relative to IAV in atmospheric transport, though 
the models do not always agree on the exact magnitude of AME in specific months. In the second test, we find 
that variations in sampling time have little impact on AME at one site (WKT) but do impact the results at another 
site (SGP); hence, we cannot rule out the role of observation sampling frequency and time on estimates of AME.

3.2.  Links Between Methane Enhancements and Transport Variability

We hypothesize that IAV in AME could be caused by two broad mechanisms. First, IAV in wind direction could 
advect methane from source regions to the tower or GOSAT observation locations more frequently in some 
years than in other years, leading to IAV in AME. Second, regional-scale IAV in wind speeds or vertical mixing 
could alter the impact of emissions on downwind observations, irrespective of wind direction. For example, 
faster surface wind speeds and more vigorous vertical mixing could cause methane to be ventilated out of source 
regions more quickly. Similarly, these phenomena could also change the amount of time air masses spend over 
the North America. In other words, it could change the average number of days between when particles enter the 
North America model domain and when they reach an observation site.

We find evidence for the second explanation in the STILT model simulations. As evidence of this relationship, 
we see a close correlation between the overall magnitude of the STILT footprints and IAV in AME at both in situ 
and GOSAT observation sites (Figures 2a and 2b). The STILT model releases a set of imaginary particles from 
the observation site, and those particles travel backward in time following estimated wind fields. These particles 
indicate where air masses traveled before reaching the observation site. The magnitude of the STILT footprint 
indicates how long those particles spent in the surface mixed layer, and how concentrated or diluted the mixed 
layer was. The longer particles spend in the surface mixed layer, the larger the footprint. Figures 2a and 2b indi-
cate that in years with higher AME, the average footprint magnitude is larger. In other words, the STILT particles 
have a longer residence time near the surface and have more intensive interactions with the surface during years 
with higher AME.
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We also explore IAV in the time air masses spend over North America. Specifically, we calculate the average 
number of days STILT particles travel over North America before reaching the observation sites (Figures 2c 
and 2d). At the end of the study period (years 2014 and 2015) when AME is larger at almost all sites, STILT parti-
cles spend more time in North America. By contrast, at the beginning of the study period when AME is generally 
smaller (years 2008 and 2009), STILT particles spend less time in North America. Remarkably, nearly all in situ 
sites show the same general pattern, indicating that IAV in atmospheric transport does not average out or cancel 
out from location to location across the US.

Unlike the footprint, Figures 2c and 2d do not indicate whether the STILT particles interacted with the surface 
where emissions sources are located or whether the particles traveled high in the atmosphere far above emissions 
sources. With that said, this panel yields parallel results as the footprint analysis.

3.3.  Links Between Methane Enhancements and Large-Scale Climate Patterns

There appears to be a relationship between variability in AME and larger-scale climate patterns like the El Niño–
Southern Oscillation (ENSO) and NAO. The first half of the study period is characterized by two La Niña events 
and persistent negative NAO anomalies (NWS, 2022a), while the end of study period features a strong El Niño 
event with consistent positive NAO anomalies (NCEP, 2022) (Figure 3). Modeled AME is 19% larger (mean 
difference) at both tower and GOSAT observation sites during El Niño than during La Niña (Figures 3a–3c).

Bruhwiler et  al.  (2017) also hypothesize that ENSO could lead to variability in methane mixing ratios—by 
changing the direction of air inflow into the North American continent and impacting the methane background 
or boundary condition. In theory, this variability could be accounted for by setting an appropriate background 

Figure 2.  The correlation (r) between annually-averaged atmospheric methane enhancements and the annually-averaged 
magnitude of Stochastic Time-Inverted Lagrangian Transport model footprints for (a) Greenhouse Gases Observing Satellite 
observations and (b) tower sites. Panels (c) and (d) further display the average number of days air masses have spent over 
North America before reaching each observation site.
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estimate. By contrast, we see variability in AME during different ENSO 
phases that is more pervasive and cannot be fully accounted for by setting 
appropriate background values.

This connection with ENSO may also be linked to variability in the amount of 
time air masses spend over North America (e.g., Figure 2d). Specifically, we 
find that STILT particles spend more time over North America before reach-
ing the observation sites during El Niño years than during La Niña years—an 
average of 1.2 days or 15% longer at the tower sites. Relatedly, several studies 
report that wind speeds across the continental US generally decrease during 
El Niño and increase during La Niña (Enloe et al., 2004; Harper et al., 2007; 
St. George & Wolfe, 2009; Yu et al., 2015), except in California where the 
opposite appears be true (Berg et al., 2013; Mohammadi & Goudarzi, 2018). 
El Niño is also associated with easterly wind anomalies in the central and 
Eastern US (Ning & Bradley, 2015). Yu et al.  (2015) further find that the 
primary mode of IAV in 80-m wind speeds across the United States is not 
only correlated ENSO but also with the NAO. Decreased wind speeds during 
El Niño and during positive NAO anomalies are consistent with decreased 
ventilation of local methane emissions and a longer residence times over the 
continental US. Unfortunately, few (if any) studies evaluate the impact of 
ENSO or NAO on other parameters that govern tracer transport across the 
US, parameters like planetary boundary layer heights.

Note that the primary time period of this study (2008–2015) only covers 
a limited number of ENSO cycles—two El Niño events and three La Niña 
events (Figure  3). With that said, we see evidence for these relationships 
across longer time periods, though these relationships are more apparent in 
the southern US (e.g., at WKT) than in the northern US (e.g., at AMT and 
LEF). Figure S4 in Supporting Information S1 shows methane observed at 
WKT, AMT, and LEF minus two different methane boundary or background 
estimates. These sites have observations extending back to the 1990s or early 
2000s. Values at WKT are 15–18ppb higher during El Niño than La Niña in 
this extended time series, depending on the boundary condition used (27%–
73% of the overall AME). By contrast, values at AMT and LEF are roughly 
similar between ENSO cycles (within 2ppb or 15% of AME). These results 
are perhaps unsurprising; WKT is proximal to large emissions and may there-
fore be more sensitive to variations in ventilation of air from the region. LEF 
and AMT, by contrast, are remote sites, and enhancements in these locations 
depend on advection of air from distant source regions. Furthermore, mete-
orology at WKT may be more impacted by ENSO than AMT and LEF due 
to its southerly location.

4.  Conclusions
Our results show that IAV in AME largely reflects atmospheric transport 
variability and that climate patterns like ENSO may be associated with large 
variations in AME, at least during the study period. Relatedly, we find that 
IAV in atmospheric transport does not necessarily average out or cancel 
out from one observation location to another: even observation sites at very 
different locations across the US show similar inter-annual variations in 

AME and in the amount of time STILT particles spend over North America. This variability is in addition to 
plausible transport-related IAV in the methane background (e.g., Bruhwiler et al., 2017).

We further argue that this transport variability can explain the disagreement over methane emissions trends 
among existing studies. Specifically, existing studies fall into two categories: studies that directly interpret trends 
in atmospheric observations (e.g., Lan et al., 2019; Sheng et al., 2018; Turner et al., 2016) and studies that estimate 

Figure 3.  Modeled atmospheric methane enhancements (AME) is higher 
during both El Niño and positive North Atlantic Oscillation cycles (a). Note 
that the right side of panel (a) displays the range for Greenhouse Gases 
Observing Satellite observations that have been averaged into 4° latitude by 
4° longitude grid boxes, as in Figure 1c. Additionally, panels (b) and (c) show 
de-seasonalized modeled and observed AME at two tower sites in oil and gas 
production regions.
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emissions using inverse modeling, which accounts for variability in transport (e.g., Benmergui et al., 2015; Lu 
et al., 2022; Maasakkers et al., 2021). The former studies often report an upward emissions trend during a similar 
time period as the present study (2.5%–4.7% per annum) while the latter studies find little upward emissions trend 
(e.g., 0.1%–0.7% per annum).

These findings pose inherent challenges for the detection of greenhouse gas emissions trends, especially given 
the limited time span of many existing in situ and satellite observation records. With that said, the use of inverse 
modeling and reanalysis products that are true to observed IAV in meteorology provides the best path forward for 
quantifying emissions trends.
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